Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption.
نویسندگان
چکیده
Methamphetamine (METH)-induced neurotoxicity is characterized by a long-lasting depletion of striatal dopamine (DA) and serotonin as well as damage to striatal dopaminergic and serotonergic nerve terminals. Several hypotheses regarding the mechanism underlying METH-induced neurotoxicity have been proposed. In particular, it is thought that endogenous DA in the striatum may play an important role in mediating METH-induced neuronal damage. This hypothesis is based on the observation of free radical formation and oxidative stress produced by auto-oxidation of DA consequent to its displacement from synaptic vesicles to cytoplasm. In addition, METH-induced neurotoxicity may be linked to the glutamate and nitric oxide systems within the striatum. Moreover, using knockout mice lacking the DA transporter, the vesicular monoamine transporter 2, c-fos, or nitric oxide synthetase, it was determined that these factors may be connected in some way to METH-induced neurotoxicity. Finally a role for apoptosis in METH-induced neurotoxicity has also been established including evidence of protection of bcl-2, expression of p53 protein, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), activity of caspase-3. The neuronal damage induced by METH may reflect neurological disorders such as autism and Parkinson's disease.
منابع مشابه
Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice.
Methamphetamine (METH) is a powerful psychostimulant that is increasingly abused worldwide. Although it is commonly accepted that the dopaminergic system and oxidation of dopamine (DA) play pivotal roles in the neurotoxicity produced by this phenylethylamine, the primary source of DA responsible for this effect has remained elusive. In this study, we used mice heterozygous for vesicular monoami...
متن کاملNeuronal Nicotinic Receptors as New Targets for Amphetamine-Induced Oxidative Damage and Neurotoxicity
Amphetamine derivatives such as methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) are widely abused drugs in a recreational context. This has led to concern because of the evidence that they are neurotoxic in animal models and cognitive impairments have been described in heavy abusers. The main targets of these drugs are plasmalemmal and vesicular monoamine transpor...
متن کاملAttenuation Effect of Cannabinoid Type 1 Receptor Activation on Methamphetamine-Induced Neurodegeneration and Locomotion Impairments among Male Rats
Background: A number of neuroimaging studies on human addicts have revealed that abuse of Methamphetamine (METH) can induce neurodegenerative changes in various brain regions like the cerebral cortex and cerebellum. Although the underlying mechanisms of METH-induced neurotoxicity have been studied, the cellular and molecular mechanisms of METH-induced neurotoxicity remain to be clarified. Previ...
متن کاملAge-dependent methamphetamine-induced alterations in vesicular monoamine transporter-2 function: implications for neurotoxicity.
Tens of thousands of adolescents and young adults have used illicit methamphetamine. This is of concern since its high-dose administration causes persistent dopaminergic deficits in adult animal models. The effects in adolescents are less studied. In adult rodents, toxic effects of methamphetamine may result partly from aberrant cytosolic dopamine accumulation and subsequent reactive oxygen spe...
متن کاملA sensitizing regimen of methamphetamine causes impairments in a novelty preference task of object recognition.
A neurotoxic regimen of methamphetamine impairs object recognition (OR) in rats. The present study investigated whether neurotoxicity is a necessary component of methamphetamine's effect on OR. Animals were exposed to a sensitizing regimen of methamphetamine, and were tested for OR one week, and locomotor behavior two weeks, later. Quantitative autoradiography was used to measure [(125)I]RTI-55...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of pharmacological sciences
دوره 92 3 شماره
صفحات -
تاریخ انتشار 2003